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Abstract

We address the problem of editing facial expression in
video, such as exaggerating, attenuating or replacing the
expression with a different one in some parts of the video.
To achieve this we develop a tensor-based 3D face geome-
try reconstruction method, which fits a 3D model for each
video frame, with the constraint that all models have the
same identity and requiring temporal continuity of pose and
expression. With the identity constraint, the differences be-
tween the underlying 3D shapes capture only changes in ex-
pression and pose. We show that various expression editing
tasks in video can be achieved by combining face reordering
with face warping, where the warp is induced by projecting
differences in 3D face shapes into the image plane. Analo-
gously, we show how the identity can be manipulated while
fixing expression and pose. Experimental results show that
our method can effectively edit expressions and identity in
video in a temporally-coherent way with high fidelity.

1. Introduction
Video on the web is growing at astonishing rates. In

2011, on YouTube alone, every minute people upload 8
years of video content. While video capture, bandwidth
and storage have become easier over time, semantic edit-
ing of video content remains a very challenging problem.
Consider the problem of making a person smile in an im-
age. This is not as simple as cutting a smile from another
image, pasting it and blending the results. The entire face
changes its shape, the chin becomes wider and the eyes be-
come narrower. The appearance depends on the pose of the
person as well as the identity: everyone smiles in a unique
way. While a Photoshop expert with sufficient amount of
time could change one’s expression in an image, doing so in
video is prohibitively expensive. The time dimension adds
new sets of constraints, such as temporal coherence, and the
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Figure 1. We can magnify or suppress an expression in video.
Middle: Frames from the original video. Top: Synthesized
frames in which the smile is suppressed. Bottom: Synthesized
frames in which the smile is magnified.

temporal “signature” of an expression.
Our goal is to allow for semantic-level editing of expres-

sions in video, such as magnifying a smile (Fig. 1) or an
expression of fear, inserting an expression, or replacing un-
wanted expressions, such as an eye roll or facial tics. In
addition, we can change the facial structure of the person,
such as widen the chin or narrow the forehead, while pre-
serving the pose and expression.

We propose a new face fitting algorithm which takes a
video of a person’s face and decomposes it into identity,
pose and expression. This decomposition allows us to make
high-level edits to the video by changing these parameters
and synthesizing a new video.

We define our task as an energy minimization problem
with the constraints of temporal coherence of the pose and
expression and unique identity of the person in all frames.
We model the face geometry over time using 3-mode tensor
model, which can only deform in low-dimensional tensor
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space. Our method results in high fidelity reconstruction
and has some robustness to viewpoint variation.

2. Related Work
Manipulating and replacing facial expressions in pho-

tographs and videos has gained more attention in recent
years [19]. Previous approaches fall into four categories:
3D-based, 2D expression mapping based, flow-based and
image reordering based approaches.

3D-based approaches try to create photo-realistic tex-
tured 3D facial models from photographs or video, such as
the expression synthesis of Pighin et al. [1] and the face re-
animating system proposed by Blanz et al. [12]. Once these
models are constructed, they can be used for expression in-
terpolation. However, creating fully textured 3D models is
not trivial. In order to achieve photorealism the system has
to model all facial components accurately such as the eyes,
teeth, ears and hair, which is computationally expensive and
unstable.

2D expression mapping methods [20] extract facial
features from two images with different expressions, com-
pute the feature difference vectors and use them to guide
image warping. Liu et al. [10] propose an expression ra-
tio image which captures both the geometric changes and
the expression details such as wrinkles. However, due to
the lack of 3D information, these methods cannot deal with
faces from different viewpoints. Theobald et al. [16] ap-
plied Active Appearance Models (AAMs) [4] to map and
manipulate facial expression. Their method is based on
PCA models for face appearance, and is not practical for
high resolution face images.

Flow-based approaches transfer facial expression by
warping face image using an expression flow map [22]. The
flow map is acquired by projecting the difference between
the two 3D shapes back to the 2D image plane. This method
showed that accurate 3D reconstruction of the face is not
necessary for transferring expressions so traditional face re-
construction methods will not help much. What is more im-
portant for generating a realistic new expression, is that the
flow map should only capture typical variations of the same
person, i.e., changes due to expression and not due to an
identity change. Moreover, this method explicitly accom-
modates for small to medium changes in pose by warping
the face to the correct pose before blending.

Image reordering based approaches - when the ex-
pected change in expressions is large, warping existing
frames is often insufficient due to the facial appearance
changes (e.g., when the mouth or eyes open). In this work
we therefore combine expression flow with reordering the
face frames from the entire input video using Dynamic
Time Warping. A similar reordering was done to the lips
region by Bregler et al. [2] to drive a video by audio, and by
Kemelmacher et al. [8] to generate smooth transitions from

a personal photo collection. Kemelmacher-Shlizerman et
al. [7] demonstrated a face puppeteering method where a
user is captured by a webcam and the system retrieves in
real-time a similar expression from a dataset video of an-
other person. The resulting videos are visually interesting
in all of the above, however these methods were not de-
signed for realistic expression editing in video. We use the
reordering idea to swap the face region, but we keep the
original pose, the face surroundings and background and we
followup with an additional expression warping for a more
realistic result.

Tensor factorization methods for faces - In order to
separate expression from identity changes, Yang et al. [22]
proposed a method to jointly fit a pair of face images from
the same person. However, their method assumes a single
dominant expression for each pair whereas our method can
handle a general linear mixture of expressions and identi-
ties. We achieve that using a 3-mode tensor model that
relates expression, identity and the location of the tracked
feature points. A few related tensor models were intro-
duced in the past. Vasilescu and Terzopoulos [17] proposed
tensor face to model the variations in frontal face images.
Their model was used for face recognition and achieved bet-
ter accuracy than PCA. Vlasic et al. [18] built a 3D tensor
model for face animation that related expressions, identity
and visemes. However, these methods do not show how to
directly solve the model coefficients for a new person, not
in the dataset. In addition, they were not designed to work
with general video sequences whereas we explicitly solve
for a single identity for the entire video and require smooth
variations of expression and pose for a more robust and real-
istic solution. Dale et al. [5] extended Vlasic’s approach for
replace facial performance in video. They could transfer ex-
pressions to a different subject that is not from the training
set. However, their system requires accurate initialization of
the identity parameters that relies on a commercial face re-
construction software, as well as on user interaction in one
or more keyframes. To set the identity they use just the first
frame, while our method is more robust to noise as we infer
the identity by jointly fitting all frames of the video.

3. Joint Fitting

Our input is a video consisting of T frames of a per-
son’s face. We use a dataset of 3D face models by [18].
It consists of models of I basis identities, each in E basis
expressions. The 3D geometric structure of a face is rep-
resented by a set of 3D points concatenated into a vector
s = (x1, y1, z1, · · · , xN , yN , zN )T that contains X,Y, Z
coordinates of its N vertices. Similar to Vlasic et al.’s ap-
proach [18], we define a morphable face model using multi-
linear decomposition, which decomposes the 3D shape into
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Figure 2. Left: Facial features detected and tracked by Active Ap-
pearance Model (AAM). Right: Updating face contour-landmark
correspondences. The green curves connect all AAM features and
the pink curve is the contour of the projected face geometry. The
short red lines show the landmarks projected onto the face contour.

expression and identity:

st = s̄+ V ×β βt ×γ γ (1)

where st is the shape vector in frame t; s̄ is the mean shape;
V is core tensor of size 3N × E × I; βt is the expression
coefficients in frame t. It is a vector of size E represent-
ing a linear combination of the basis expressions. γ is the
identity coefficients, a vector of size I representing a linear
combination of the basis identities.

Our face fitting algorithm infers the global identity γ,
the expression at each frame βt as well as the face pose in
each frame, represented as a 2x3 weak perspective projec-
tion matrix. We find the values of these parameters that min-
imize the error between the projections of the pre-defined
landmarks on the 3D face geometry, and the 2D feature
points. The 2D feature points are detected and tracked by
using Active Appearance Model (AAM) [4] and concate-
nated into a vector Y = (x1, y1, · · · , xK , yK)T . We use
the face tracker proposed by Saradgih et al. [14] to track 66
facial features Yt for each frame t, as illustrated in Fig. 2.

The 3D face model has a large number of vertices. We
use a small portion of them which correspond to the 2D
points detected by AAM. These K landmarks are prede-
fined in 3D geometry, and can be selected by using a selec-
tion matrix Lt = Lt ⊗ I3. The matrix Lt is a 0/1 matrix of
sizeK byN , each row of which has exactly one entry being
1, and all others being 0. Here “⊗” denotes the Kronecker
product and I3 is the identity matrix of dimension 3.

We define the projection matrix in frame t as Rt =
IK ⊗ Rt, which projects K selected vertices at the same
time, where Rt is the 2x3 weak perspective projection ma-
trix. Based on the above definitions, the 2D projections of
the K selected landmarks are:

Xt = RtLtst = Ptst (2)

where Pt combines our selection and projection matrices.
The fitting error term Ef is defined as the sum of squared

errors between the projections of the pre-defined landmarks
on the 3D face geometry and the 2D feature points:

Ef =
∑
t

||W 1/2(Ptst − Yt)||2 (3)

where W2K×2K is a positive diagonal matrix controlling
the weights of landmarks. In our system we set w = 0.5 for
eyebrow landmarks since our training shapes are textureless
and these landmarks are hard to be labeled accurately. We
empirically set w = 1 for contour points, and w = 2 for all
other points.

In addition to minimizing the fitting error, the new shape
should also be close to the distribution of the training
shapes. Therefore, we define the shape energy for identity
coefficients γ and expression coefficients βt as:

Eγ =
1

2
γT γ (4)

and:
Eβ =

1

2

∑
t

βTt βt (5)

Finally, for a video clip, the facial expressions should
change smoothly over time. Thus we also enforce temporal
coherence by penalizing the 1st and 2nd order derivatives of
βt,

Ee =
1

2

∑
t

(λ1||Otβt||2 + λ2||O2
tβt||2) (6)

We define the total energy function as the weighted sum of
the above energy terms:

E = Ef + λγEγ + λβEβ + Ee (7)

where λ’s are parameters controlling the tradeoff between
the energy terms.

3.1. Optimization

The total energy E is minimized with respect to the pro-
jection matricesRt, the expression vectors βt and the global
identity vector γ. To minimize the total energy, we use
coordinate descent: in each step we optimize one variable
while fixing the rest. The four steps are iterated until con-
vergeance. Our algorithm is summarized in Algorithm 1.
To initialize, we set all βt’s to zero, and γ to a random vector
with unit length.

3.1.1 Fitting the projection matrices Rt

First we fit the projection matrix Rt, separately for every
frame, to minimize the error between landmark projections
Xt and 2D feature points Yt. Following the restricted cam-
era estimation method [6], which assumes that pixels are
square and the skew coefficient between x and y is zero,
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Algorithm 1 Optimize E with respect to Rt, γ, βt
1: Initialize βt and γ
2: repeat
3: Fit projection matrices Rt.
4: Update contour-landmark correspondences Lt.
5: Fit identity coefficients βt.
6: Fit expression coefficients γ.
7: until converge

the projection matrix Rt is parameterized with 4 unknown
variables: pitch, yaw, tilt and scale. The unknown parame-
ters can be optimized by using Levenberg-Marquardt algo-
rithm [11] to minimize the geometric error.

3.1.2 Updating contour-landmark correspondences Lt

For landmarks located inside the face region, we can sim-
ply hard-code the corresponding 3D vertex. However, land-
marks along the face contour do not have a unique corre-
sponding vertex; they must be matched with 3D vertices
along the face silhouette. In this step we build correspon-
dences between contour landmarks and shape vertices. As
shown on Fig.2, we first project the face geometry onto the
image plane with projection matrix Rt. Then we find the
contour of the projection (pink curve). For each landmark,
we find its closest point on the contour (red lines), and as-
sign it to the corresponding vertex.

3.1.3 Fitting the identity vector γ

The total energy E is a quadratic function of the identity
coefficients γ. To minimize E with respect to γ, we set its
partial derivative to zero and solve the linear system:

∂E

∂γ
=

∑
t

MT
t W (Pts̄+Mtγ − Yt) + λγγ = 0 (8)

in which:
M

(γ)
t = Pt(V ×β βt) (9)

By solving the above equation, we get:

γ = A−1B (10)

in which:
A =

∑
t

At + λ1I (11)

where:
At = MT

t WMt (12)

and:
B =

∑
t

Bt (13)

where:
Bt = MT

t W (Xt − Pts̄) (14)

3.1.4 Fitting the expression coefficients βt

SinceE is quadratic function of βt, we set the partial deriva-
tive of E with respect to βt to zero and solve the resulting
linear system for βt:

∂E

∂βt
= MT

t W (Pts̄+Mtβt − Yt) + λββt

+ λ1(−βt−1 + 2βt − βt+1)

+ λ2(βt−2 − 4βt−1 + 6βt − 4βt+1 + βt+2)

= 0 (15)

in which:
M

(β)
t = Pt(V ×γ γ) (16)

We now concatenate the βt’s in all frames into one vector
β = [βT1 , · · · , βTT ]T , and solve β as:

β = A−1B (17)

in which:

A = diag(At) + λβI + λ1H1 + λ2H2 (18)

and:
B = [BT1 , . . . , B

T
T ]T (19)

Here At and Bt are defined in the same form as in Eqn. 12
and Eqn. 14, replacing Mt with M (β)

t . H1 and H2 control
the temporal smoothness and are defined as:

H1 = (KT
1 K1)⊗ Im (20)

H2 = (KT
2 K2)⊗ Im (21)

and

K1 =

1 −1
· · ·
−1 1


(T−1)×T

(22)

K2 =

−1 2 −1
· · ·
−1 2 −1


(T−2)×T

(23)

3.2. Fitting a sequence

We evaluate the proposed fitting algorithm using a se-
quence of 46 frames from the “Talking Face Video” [3]. In
this video a subject changes his expression from neutral to
smile and then back to neutral. We use our fitting method
to infer the expressions in each frame βt, reduce them to
3D and visualize their trajectory over time on Fig. 3. As
expected the trajectory starts from the neutral expression
point, goes towards smiling and back to neutral. We plot
the total energy and all the components in the first five it-
erations of our algorithm. The total energy monotonically
decreases in each step and our method converges.
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Figure 3. Fitting a sequence. Top: As the person goes from neutral
to smiling and back to neutral expression, we are able to infer the
expression coefficients over time βt and plot their trajectory in 3D.
Bottom: The energies after each step in the first five iterations.
The total energy decreases monotonically and converges quickly.

4. Expression Manipulation
Given an input video we would like to manipulate (e.g.,

exaggerate) the facial expressions without affecting the
identity properties of the face, as well as preserve the orig-
inal 3D pose of the head. Therefore we adjust the expres-
sion coefficients βt estimated by our joint fitting algorithm
according to the type of manipulation, while keeping the
identity γ and pose Rt unchanged for all video frames. The
adjusted coefficients β′t could be a function of βt or new
ones (will be described in Sec. 5).

One way to obtain an image with adjusted expression
from β′t is to compute the new location of the 2D feature
points and warp the input frames. The flow that warps one
expression into another was called “Expression Flow” by
Yang et al. [22][21]. However, we observed this method of-
ten does not get realistic results, especially when the change
in coefficients is large. This is for two reasons: First, a facial
expression (e.g. smile) contains changes in both shape and
appearance (e.g. opened mouth and folds on cheeks). Only
warping the shape is not enough for a realistic change in
expression. Second, warping frame-by-frame requires both
the source and destination to take the same time. Ideally we
would like the source and destination to be able to vary in
duration. Therefore we do the change in two main steps -
we first apply Dynamic Time Warping (DTW) [13] to ob-
tain a new sequence of input frames with close expression
coefficients to the desired ones, and then apply “Expres-
sion Flow” to correct for the residual discrepancies. Finally
we apply an addition warp to the head region to match the

Edit expression:

Find optimal path 
using DTW:

Residual warp using 
“Expression Flow”

Correct 3D pose 
and face‐head 
compatibility

OutputInput

Figure 4. Expression manipulation process. For each input frame
we define a desired expression manipulation β′t = f(βt). Then we
use Dynamic Time Warping to find an optimal sequence of frames
from the input video βtDTW that is both close to the desired ex-
pressions and is temporally coherent. We then apply “Expression
Flow” to correct residual differences between and βtDTW and β′t.
Finally we apply a correction warp to warp the head to match the
contour of the new face (e.g. lower jaw when smiling). The entire
process is automatic; the user only has to specify the location and
magnitude of the expression change.

its boundaries to the geometry of the new expression. The
flow chart of the overall manipulation process is illustrated
in Fig. 4.

Dynamic Time Warping (DTW) - we treat the input
video as a dataset with expressions βt and apply the DTW
method to map the sequence of new β′t to the dataset. The
distance map is computed as the Euclidean distance in the
expression subspace: D(i, j) = ||β′i − βj ||2. Fig. 5 shows
an example. In the original video the subject changes ex-
pression from neutral to full smile. The original expression
coefficients βt (green curve on Fig. 5, left) are scaled by
a factor of 0.5 (blue curve) to neutralize the smile. Fig. 5
right shows the mapping procedure in DTW. The new se-
quence, with expressions βtDTW

, only maps the first half of
the original video. Therefore, the result video only shows a
half smile.

Residual Expression Flow - Expression Flow F
(face)
ij

is a flow that warps a face with expression βj in the original
frame Ij to an expression β′i in frame Ii and is computed as
follows:

F
(face)
ij = RiV ×β β′i ×γ γ −RjV ×β βj ×γ γ (24)

In our case we use Expression Flow to warp the output of
DTW (βj = βtDTW

) to the desired expression (βi = β′t).
Fig. 6 shows an example of exaggerating facial expression.

Correcting boundary compatibility - After applying
Expression Flow to warp the face from frame ItDTW

, we
need to copy it into frame It. For a high-fidelity result, the
background should also be warped, so that both sides of the
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Figure 5. Expression neutralization. Left: The original expres-
sion coefficients βt (green curve) is scaled by factor 0.5 (blue
curve). Right: Frame correspondence computed using Dynamic
Time Warping (red curve on top of the frame distance matrix).

Figure 6. Exaggerating the smile using face flow. Left margin:
The original 3D shape and, below it, the modified one after chang-
ing the expression coefficients using equation 25. Top: Original
image (left) and the warped result (right). Bottom: The flow in X
(left) and Y (right).

face boundary move the same way. To warp the background
we compute the optical flow [9] between the two images.
The face flow described above defines the warping of pixels
inside the face boundary, and the optical flow defines the
warping of pixels outside the face boundary. We use the
Moving Least Squares [15] approach to smoothly blur the
difference between the two flows.

5. Applications and Results
5.1. Changing the Magnitude of an Expression

To neutralize or exaggerate the expression, we scale the
expression coefficients βt with a factor α:

β′t = β0 + α(βt − β0) (25)

where β0 are the expression coefficients of a neutral face.
Setting α < 1 will neutralize the expression, and setting
α > 1 will exaggerate the expression. The results are shown
in Fig.1 and Fig.10.

5.2. Expression Interpolation and Replacement

In a similar way we can replace a section in the video
(marked by the user) that contains an undesired expression.
One way to do that is to interpolate linearly the expression
coefficients from the two boundaries β′t = αβ1+(1−α)β2.
However this sometimes produces “frozen” looking results,
especially for a long gap and similar end points. A more in-
teresting fill can be done by letting the user choose a frame
with a desired expression. Then we assign the chosen β
as the value in the center of the gap and interpolate its val-
ues towards the two gap boundaries. Such an expression
replacement is show in Fig.7.

5.3. Identity Modification

We can also modify the identity coefficients γ, and use
the new shape to warp the original frames. An example is
shown in Fig. 8. For this example, we find a subject in the
training data set who has a wider chin, and use the corre-
sponding γg as guidance to change γ in the input sequence
as γ′ = γ + α(γg − γ), where we set α = 0.5 for this
example. The result shows that by changing the identity
coefficients γ, the subject’s chin widens as expected.

5.4. Limitations

While our method can produce high-fidelity face manip-
ulation results it comes with some limitations. First, the
similarity measure we use in the DTW step can capture
changes related to the location of the tracked feature points.
Therefore it is limited by the accuracy of the tracker and it
cannot capture other subtle appearance changes (subtle lip
motions, areas not covered by points such as cheeks, illumi-
nation changes). In practice we found that we can get good
results as long as we copy frames from a close-by neigh-
borhood within the same video. In the future we plan to
add appearance-based features [8] to our similarity and im-
prove the compositing method [22] to alleviate this prob-
lem. Second, when magnifying an expression, there is a
limit to how much we can warp realistically a face with the
residual Expression Flow, beyond the most extreme expres-
sion found in the video in the DTW step. Therefore we limit
the amount of maximal warp in our implementation. Third,
for some people our model does not separate well identity
from expression shape changes, which causes a mixed iden-
tity and expression change when trying to edit only one of
them. This is due to the linearity of our tensor model and the
size of the dataset we use [18]. Lastly, our method does not
perform well for large pose variations in which previously
occluded part of the head would need to be synthesized.

5.5. Comparisons

We first compare our method with a single image fitting
method described in [22]. This method also decomposes
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Figure 7. Replacing expression. Top: A section with undesired expression marked for removal. Bottom: The user chooses a desired frame
and its expression coefficients are defined fixed for the mid frame (red). The expression coefficients are linearly interpolated in the two
remaining gaps and filled using our method.

Figure 8. Changing identity coefficients γ results in changing the
face structure throughout the video, independent of expression
changes. Top: An original shape and frames. Bottom: After
changing γ to a different person with wider chin.

the face into expression and identity coefficients. However,
it operates on single images only and does not leverage tem-
poral coherence. The method of Dale et al. [5] operates on
the entire video. However, it fits the identity coefficients
γ on the first frame only, instead of using all frames. We
approximate their method by fitting γ using just the first
frame. The results are shown on Fig. 9 middle. With lim-
ited number of landmarks, a single frame is not enough to
find the accurate γ, which results in larger fitting error. As
we show on Fig. 9 bottom, our method is able to fit the face
more accurately.

6. Conclusion and Future Work
In this paper we present a new method to reconstruct 3D

face shapes from a video sequence with identity constraint.
By decoupling identify from expression, this method allows
us to manipulate the expression in video in a variety of ways
while maintaining the fidelity of the faces.

PCA

Dale’s

Ours

Figure 9. Comparison of the fitting result for frames 10,20,30,40.
Top: Single image fitting of [22], which applies PCA model in-
dependently for each frame. Middle: An approximation of Dale
et al. [5] using our method where we fit the identity coefficients
using only the first frame. Bottom: Our method, which jointly fits
all frames and enforces a common global identity. We are able to
fit the face more accurately.

Although only used for expression manipulation, our
method can be potentially used for other applications. For
example, with the identity and smoothness constraints used
in our optimization framework, our method is robust to
tracking outliers, and could potentially be used for improv-
ing the robustness of ASM tracking in video. Our method
could also support more complicated expression editing
tasks, such as changing the expression statistics in a video.
Finally, by combining with expression recognition tech-
niques, our system could achieve automatic bad expression
identification and replacement without any user interaction.
In the future we plan to explore along these lines.
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Figure 10. More examples of magnifying expressions, such as smile or fear. The original frames are in the middle rows. The synthesized
expressions are shown above (suppressed) and below (magnified).
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