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Figure 1: Our system can generate fully automatically high quality face morphing animation between faces of different pose and expression.
Top: morphing between images of the same subject. Bottom: morphing between different subjects. The input images are the first and last
column (highlighted in red).

ABSTRACT

Traditional automatic face morphing techniques tend to generate
blurry intermediate frames when the two input faces differ signif-
icantly. We propose a new face morphing approach that deals ex-
plicitly with large pose and expression variations. We recover the
3D face geometry of the input images using a projection on a pre-
learned 3D face subspace. The geometry is interpolated by factor-
ing the expression and pose and varying them smoothly across the
sequence. Finally we pose the morphing problem as an iterative op-
timization with an objective that combines similarity of each frame
to the geometry-induced warped sources, with a similarity between
neighboring frames for temporal coherence. Experimental results
show that our method can generate higher quality face morphing
results for more extreme pose, expression and appearance changes
than previous methods.

1 INTRODUCTION

Image morphing is a special visual effect in which one image is
smoothly transformed into another. It has been extensively explored
and widely used in motion pictures and animations. Image mor-
phing between two images usually begins with extracting features
from both images and building correspondence between the two
feature sets. A pixel-wise mapping function is then derived from
the sparse feature correspondence, which is used to warp both in-
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put images into desired alignment at each interpolation position.
Finally, color interpolation is performed to generate each transition
frame [21].

In this paper we study the problem of image morphing between
two face images, either from the same or different individuals. This
is a challenging task, since human faces are highly non-rigid and
could perform large 3D shape deformation under expression and
pose variations. Moreover, human perception is sensitive to even a
small amount of artifacts in faces.

Generic image morphing methods do not employ a 3D face
model and, therefore, they are unable to accurately factor the dif-
ferences between the two images due to pose and expression varia-
tions. As we will demonstrate later, without such accurate models
of pose and expression, the interpolation results become unnatu-
ral. Furthermore, some previous morphing methods require tedious
manual labeling on input images, which is undesirable in many ap-
plications.

We propose a novel approach for generating high quality face
morphing animations. Our system is fully automatic and requires
only the two end images as input. We first extract facial landmarks
from each input image, and project them on a subspace learned
from an external face shape dataset to recover the 3D face geome-
try. The geometry is factored into the pose and the expression of the
input face. These are interpolated independently to create realistic
intermediate shapes of the input face. For expression interpolation,
we combine the expression flow [22] derived from the interpolated
3D models. Finally, our system employs an iterative appearance op-
timization framework where each intermediate frame is required to
have similar geometry to the two corresponding interpolated mod-
els (up to a small residual optical flow to capture subtle geometric
changes), as well as similar appearance to its neighbor frames. This
optimization results in a sharp and temporally coherent interpola-
tion sequence, as shown in examples in Figure 1.

To demonstrate the effectiveness of the proposed algorithm we



compare it against a number of commonly used morphing ap-
proaches. Our experiments indicate that the proposed approach can
generate higher quality face morphing results. As an additional ap-
plication, we show how the system can be used to delete an unde-
sired expression from a video sequence.

2 RELATED WORK

User-assisted morphing. Most previous image morphing ap-
proaches require the user to manually specify feature correspon-
dences between input images [20]. Mesh morphing methods [21,
10] define the spatial transformation at mesh points or snake curves.
The mesh is then deformed with the constraint to maintain topologi-
cal equivalence. The field morphing method [1] uses corresponding
lines in the source and target images to define the mapping function
between the two images, which simplifies the user input. These
methods have already been implemented in commercial systems.
However they require tedious annotation and do not work well for
large variations in pose, as the 2D transformations used in these
methods do not preserve 3D facial shape.

The view morphing method [16] preserves the 3D shape dur-
ing morphing without the explicit use of 3D models. It works by
pre-warping the two images prior to computing a morph, and then
post-warping the interpolated images. This method works well for
rigid objects. However, it cannot accurately estimate the projection
parameters for a deformable object like a face exhibiting change
in expression. Furthermore, it still requires substantial manual cor-
respondence. In contrast, our approach is fully automatic and can
handle both pose and expression variations.

Automatic morphing. Bichsel [2] proposes a fully-automatic
morphing technique using a Bayesian framework and maximizing
the penalized likelihood of the spatial and color transformations
given the input images. Zanella et al. [23] and some other commer-
cial face morphing packages such as the Face Morpher1 use Active
Shape Model (ASM) [5] to find corresponding points and then lin-
early interpolate their locations for mostly frontal view morphing.
Our method also uses ASM for initial correspondence, however this
is followed by projection on a 3D subspace and further appearance
optimization. Therefore our method is more robust to the inaccura-
cies in point locations, and can handle large 3D pose variations.

Mahajan et al. proposed the Moving Gradients [12] method for
automatic image interpolation which handles occlusions explicitly.
It finds an optimal path for gradients at every pixel from one im-
age to the other, and get impressive results. However, the motions
were roughly linear and thus mostly confined to small 2D changes.
Another recently proposed automatic method is Regenerative Mor-
phing (RM) [17] in which the output sequence is regenerated from
small pieces of the two source images in a patch-based optimization
framework. The method generates appealing automatic morphs be-
tween radically different images and can produce impressive image
interpolation results with additional point correspondences (either
manual or based on automatic feature matching). Our optimization
algorithm was inspired by RM, but it operates at the frame-level,
as opposed to the patch-level. We report comparisons to RM, us-
ing the same ASM correspondences as our method, as well as to
other general morphing methods (Sec. 6). The results show that our
method is better suited for high-quality realistic face morphing.

3D face animation. There has been extensive work on creat-
ing face animations based on 3D face models [6][8][19]. However,
accurate 3D face reconstruction from a 2D image is a challenging
task by itself. We reconstruct a rough shape of the face that suffices
for applying small changes in pose and expression [22]. Blanz et
al. [3] proposed a face animation system by using a 3D morphable
model of face shape and texture. The system has to model all facial
components accurately (e.g. eyes, teeth and ears) and is computa-
tionally expensive.

1http://www.facemorpher.com/

3 ALGORITHM OVERVIEW

The framework of the proposed face morphing approach is shown
in Figure 2. Given the two input images A and B, we first fit a
3D shape to each of them, as described in Section 4. A 3D shape
contain two sets of parameters: external parameters describing the
3D pose of the face, and intrinsic parameters describing the facial
geometry of the person under the effect of facial expression. We
then linearly interpolate both the intrinsic and external parameters
of the two input faces, resulting in a series of interpolated 3D face
models, as shown in the bottom of Figure 2.

We use the dataset of 3D face models proposed by [18]. Since
all the 3D models have one-to-one dense vertex correspondence,
by projecting the 3D models to the image plane, we obtain warp-
ing functions from each input image to all interpolated frames. By
warping the input image A with its corresponding warping func-
tions, we can generate a series of deformed images A1,A2, ...,AT ,
where T is the number of intermediate frames to be generated. Sim-
ilarly, a series of images B1,B2, ...,BT can be obtained by warping
image B.

A weighted averaging between At and Bt would give us an in-
terpolated face Ct as the morphing result, as shown in Figure 2.
However this approach is not optimal, as each At and Bt pairs is
processed individually, thus they are not necessarily well aligned
and temporal coherence is not guaranteed. To further improve the
quality of the morphing sequence, inspired by the recent Regener-
ative Morphing approach [17], we define a morphing energy func-
tion and employ an iterative optimization approach to minimize it,
as described in Section 5.

4 FITTING 3D SHAPES

We first describe how to fit a 3D face shape to a single face im-
age. We follow the method described in the Expression Flow sys-
tem [22], which is an efficient method for fitting 3D models to near-
frontal face images. This method first localizes facial landmarks
using the Active Shape Model (ASM) [13], then fits the 3D model
based on these landmarks.

The face shape is defined using a shape vector s concatenating
the X ,Y,Z coordinates of all vertices. The deformable face model
is constructed by running Principal Component Analysis (PCA) [4]
on the training dataset from Vlasic et al. [18]. A new shape can
be formed as a linear combination of eigenvectors vi and the mean
shape s̄:

s = s̄+∑βivi = s̄+Vβ . (1)

The 3D fitting is performed by varying the coefficients β in order to
minimize the error between the projections of the pre-defined land-
marks on the 3D face geometry and the 2D feature points detected
by ASM. The fitting error for the kth landmark is defined as:

Ek =
1
2
||P ·Lk · (s̄+Vβ )−Xk||2 (2)

where P is a 2× 3 projection matrix, Lk is a selection matrix that
selects the vertex corresponding to the kth landmark and Xk are the
X ,Y coordinates of the kth ASM landmark. The total energy E,
which is the total fitting error of all landmarks, is minimized with
respect to the projection matrix P and the shape coefficients β us-
ing iterative optimization approach. In the first step the projection
matrix P is optimized to align the current 3D shape to the 2D fea-
tures. In the second step the shape coefficients β are optimized to
deform the 3D shape for better fitting. The two steps are repeated
until convergence.

4.1 The projection matrix P

In the 3D fitting algorithm described above the projection matrix P
is computed to align the current 3D shape to the 2D landmarks. The
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Figure 2: Overview of our framework. We first fit 3D shapes to both input images, and interpolate the 3D models for intermediate frames. The
faces are warped using the difference between the 3D models. In each frame, the warped faces are blended together.

method in the Expression Flow system [22] uses a weak perspec-
tive projection model, and solves P using a least squares approach.
However, we find this approach not optimal, since the variations
of facial shapes are also captured by P, resulting in an inaccurate
solution of β . For instance, an elongated face in the image can be
explained either by a large scale in the Y direction of the projection
matrix, or by an elongated 3D face geometry.

To avoid this ambiguity, we add two constraints to the projection
matrix: the X and Y directions have the same scale, and there is
no skew between them. Such a camera model is usually referred
to as a restricted camera model [7]. The projection matrix P is
parameterized with 6 variables, which can be estimated iteratively
using the Levenberg-Marquardt algorithm [14].

5 OPTIMIZATION OF SHAPE AND APPEARANCE

We pose morphing as an optimization problem with an objective
function that requires each frame in the output sequence of faces to
be similar in shape (expression and pose) and appearance to a linear
interpolation of these from the two sources. In addition, we want
the shape and appearance to change smoothly from frame to frame.

Given the 3D shapes for the faces in input images A and B, we
can easily interpolate their expression and 3D pose parameters to
any intermediate view using an image warp induced from the 3D
change. After that we employ an iterative optimization that max-
imizes the appearance similarity of the morphed sequence to the
shape interpolated views while maintaining temporal coherence.

5.1 Prewarping the sources

The 3D face shapes contain two sets of parameters. The intrin-
sic parameters are the shape coefficients β , describing the facial
geometry of a person exhibiting a facial expression. The external
parameters include the rotation angles θx,θy,θz, the scale c, and
the 2D translations x0,y0, describing the 3D pose of the face. We
linearly interpolate the intrinsic and external parameters of two in-
put faces, resulting in a series of interpolated 3D face models. The

interpolation of the each parameter p in frame t is defined as:

pt = kA pA + kB pB, (t = 1, ...,T ) (3)

where kA = (1− t
1+T ) and kB = t

1+T . Then we reconstruct the 3D
shapes for all intermediate frames, as shown in Fig. 2 (bottom row).

To warp the input faces to the desired pose and expression, we
apply “Expression Flow” [22]. As shown in Fig. 3, given two 3D
shapes, we compute the difference between the projections of each
corresponding vertex, and get a flow map. Applying the flow warps
the original faces A and B to images At and Bt correspondingly with
an interpolated pose and expression.

Figure 3: Warping the input image using expression flow. The flow
map is computed by comparing the difference between two 3D mod-
els. The resulting image is the face warped to new pose and expres-
sion.

5.2 Appearance Optimization
A simple weighted averaging between At and Bt would give us an
interpolated face Ct , as shown in Fig. 2. However this approach
is not optimal, as each At and Bt pair is prewarped individually,
thus temporal coherence is not guaranteed. Furthermore, Ct may be
blurry due to misalignment between At and Bt . To further improve
the quality of the morphing sequence, inspired by the Regenerative



Morphing method [17], we define a morphing energy function and
employ an iterative optimization to minimize it.

At

Bt

Ct Ct+1Ct‐1

Figure 4: Appearance optimization.

First, every frame should be similar to the source images with an
interpolated pose and expression. This prevents the appearance of
the sequence from deviating too much from the source images. Sec-
ond, the changes between every frame and its interpolated neighbor
frames should be small. These two requirements give the following
energy function in frame t.

Et = k(A)t ||Ct −W fAt
(At)||2 + k(B)t ||Ct −W fBt

(Bt)||2

+ k(C)||Ct −W fCt−1
(Ct−1)||2 + k(C)||Ct −W fCt+1

(Ct+1)||2

where At and Bt are input faces warped by expression flow and Ct
is the interpolated face at frame t. In order to handle small resid-
ual misalignments between the warped sources, we apply a residual
warp W induced by an optical flow [11] between At (or Bt , Ct−1,
Ct+1 ) and Ct . We set k(C) to 1, and then k(A)t and k(B)t are interpo-
lated between 0 and 1.

This quadratic energy function is minimized by a simple
weighted sum of four images. Hence the face at frame t is updated
as follows:

Ct = k(A)t W fAt
(At)+ k(B)t W fBt

(Bt)

+ k(C)W fCt−1
(Ct−1)+ k(C)W fCt+1

(Ct+1) (4)

We run typically two iterations for each frame and sweep over
all frames in consecutive order for three times back and forth for a
convergence of the entire morph sequence. Our algorithm is sum-
marized in Algorithm 1.

Algorithm 1 Appearance Optimization
1: Fit 3D shapes to two input images A and B.
2: Compute interpolated 3D face shapes.
3: for all frames t do
4: Warp input images A and B to interpolated states At and Bt .
5: end for
6: Initialize Ct as weighted sum of At and Bt .
7: repeat
8: for all frames t do
9: repeat

10: Optimize Ct using Eq. 4.
11: until frame converges
12: end for
13: until sequence converges

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 5: The result of disabling appearance optimization. (a) and (b)
and two input images. (c) and (d) are acquired by warping the input
images using 3D models. (e) is the result when using only similarity
to the warped sources At and Bt (a weighted sum of (c) and (d)). (f)
is the result when using only temporal smoothness (Ct−1 and Ct+1).
(g) is the result of the full system.

5.3 Warping background

The optimization above generates a morph sequence for the face
region only. In addition, we apply optical flow based interpolation
to warp the background outside the face region, by interpolating
the flow for each frame. We use the Moving Least Squares [15]
method to smoothly blur the difference between the two flows at
the boundary between the regions.

6 EXPERIMENTS

6.1 Face Morphing

We first apply the proposed method in face morphing between im-
ages of the same subject. The results on two pairs of images are
shown in Fig. 9, and Fig. 8 with closed-up views. We compare our
method with four previous morphing methods: registration-based
crossfading, mesh morphing, optical flow, and regenerative mor-
phing. For cross-fading, we first register the two input images by
estimating a similarity transform between them using the detected
feature points. This is similar to the frame transition method used
in the Photobios system [9]. For mesh morphing, we triangulate
the face image using the 68 feature points detected by the ASM
method. We use the recently proposed optical flow method [11]
for comparison. For regenerative morphing, we use the authors’
implementation.

As shown in the figures, the face morphing results generated by
previous methods contain noticeable artifacts, mainly due to the
large pose and expression changes between input images. The re-
sults generated by our system have fewer artifacts and are of higher
quality. We also noticed that results generated by regenerative mor-
phing contain some temporal jittering, which is not visible in still
images. Please refer to the supplementary video for temporal coher-
ence comparison, as well as more results. We also apply face mor-
phing between different subjects. One example is shown in Fig. 1.
Another example is shown in Fig. 6, where we also compare the
quality of interpolated faces with previous approaches.

To further evaluate the effectiveness of the proposed method, we
compare our results against those generated by disabling appear-
ance optimization. The 3D models are still used to warp the in-
put images to the desired 3D pose and expression. As shown in
Fig. 5(e), we take the weighted sum of the warped faces. The results
are blurry because the faces are not aligned well. Fig. 5(f) shows
the result when using only temporal smoothness (Ct−1 and Ct+1),



Crossfading Mesh morphing Optical flow Regenerative Our

Figure 6: Morphing between different subjects. Top two: Our morphing result. Bottom: Comparison of different algorithms on the third frame.

which has artifacts above the right eye. After applying appearance
optimization, our system can get good intermediate frames.

6.2 Replacing Undesired Expression
Our method can be used to stitch the video after removing a portion
of it. This can be used to remove an undesired expression, such
as a tic or a yawn. As shown in Figure 7, the frames highlighted
in red are manually identified and removed. Our face morphing
system could generate a smooth transition and stitch the video after
removing a clip.

6.3 Timing
Our system is implemented in Matlab. It takes about 10 minutes
to create 8 intermediate frames for face regions about 200 by 200
pixels, on a Intel CPU of 2.40 GHz. A large portion of the time is
taken by the repeated optical flow computations. With latest GPU
based optical flow method, the running time may be significantly
reduced.

6.4 Limitations and Future Work
To be able to perform face morphing fully automatically, our sys-
tem must rely on fully automatic performance of its components.
Specifically, we rely on ASM for localizing facial components, and
current ASM implementations can fail under large viewpoint varia-
tions or occlusions. We use optical flow to capture subtle geometric
changes and build a residual warp. However, it might break when
there are large differences in facial appearance, skin tones or illu-
mination between two inputs. Therefore the current method is not
effective for morphing between radically different people.

In this paper we focus on the problem of morphing faces and
we do not have a sophisticated model for the background. Another
direction for future work is in improving the model of the facial
structure, such as explicitly modeling the locations of the pupils
and ensuring they properly interpolate when the input images have
large differences in gaze direction.

7 CONCLUSION

We address the problem of generating high quality face morphing
animation given two faces of difference pose and expression. We

show that a 3D subspace model learned from a small collection
of human faces exhibiting realistic expression, constrains well the
space of possible face deformations for interpolating casual face
photos. Unlike traditional warping methods used for morphing that
require accurate correspondence between the two source faces, we
warp the two faces independently and only roughly using an 3D
model based flow. Thus, we avoid traditional warping artifacts
like fold-overs and “holes”. The appearance optimization can re-
cover small misalignment and other small changes not covered by
the shape model and so traditional blurriness and hosting artifacts
are suppressed. Future direction include handling partial occlusion
(like sunglasses) using a more robust appearance optimization, face
extrapolation, non-linear interpolation and applying this approach
to other classes of objects for which effective 3D subspace models
can be learned.
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Figure 9: Face morphing results for two subjects. For each subject: Top row: crossfading. 2nd row: mesh morphing. 3rd row: simple optical
flow. 4th row: regenerative morphing. Bottom row: our method. The close-up views of the middle columns are shown in Figure 8.


