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Figure 1: Example of applying the proposed expression flow for face component transfer. (a) and (b) are input images, and the user wants to
replace the closed mouth in (a) with the open mouth in (b). (c). Expression flow generated by our system, which warps the entire face in (a)
to accommodate the new mouth shape. Top: horizontal flow field, bottom: vertical flow filed. (d) Final composite generated by our system.
(e). Composite generated using 2D alignment and blending. Note the unnaturally short distance between the mouth and the chin.

Abstract

We address the problem of correcting an undesirable expression on
a face photo by transferring local facial components, such as a smil-
ing mouth, from another face photo of the same person which has
the desired expression. Direct copying and blending using exist-
ing compositing tools results in semantically unnatural composites,
since expression is a global effect and the local component in one
expression is often incompatible with the shape and other compo-
nents of the face in another expression. To solve this problem we
present Expression Flow, a 2D flow field which can warp the target
face globally in a natural way, so that the warped face is compatible
with the new facial component to be copied over. To do this, start-
ing with the two input face photos, we jointly construct a pair of 3D
face shapes with the same identity but different expressions. The
expression flow is computed by projecting the difference between
the two 3D shapes back to 2D. It describes how to warp the target
face photo to match the expression of the reference photo. User
studies suggest that our system is able to generate face composites
with much higher fidelity than existing methods.
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1 Introduction

Everyone who has the experience of taking photographs of family
members and friends knows how hard it is to capture the perfect
moment. For one, the camera may not be at the right setting at
the right time. Furthermore, there is always a delay between the
time one sees a perfect smile in the viewfinder and the time that
the image is actually captured, especially for low-end cell phone
cameras which have slow response. For these reasons, face images
captured by amateur photographers often contain various imperfec-
tions. Generally speaking, there are two types of imperfections.
The first type is photometric flaws due to improper camera settings,
thus the face may appear to be too dark, grainy, or blurry. The
second type, which is often more noticeable and severe, is the bad
expression of the subject, such as closed eyes, half-open mouth, etc.

With recent advances in image editing, photometric imperfections
can be largely improved using modern post-processing tools. For
instance, the personal photo enhancement system [Joshi et al. 2010]
provides a set of adjustment tools to correct global attributes of the
face such as color, exposure, and sharpness. Compared with pho-
tometric imperfections, expression artifacts are much harder to cor-
rect. Given a non-smiling face photo, one could simply find a smil-
ing photo of the same person from his/her personal album, and use
it to replace the whole face using existing methods [Bitouk et al.
2008]. Unfortunately, this global swap also replaces other parts of
the face which the user may want to keep. Local component trans-
fer among face images is thus sometimes more preferable.

However, local component transfer between face images with dif-
ferent expressions is a very challenging task. It is well known in the
facial expression literature [Faigin 1991] that expressions of emo-
tion engage both signal-intensive areas of the face: the eye region,
and the mouth region. For an expression of emotion to appear gen-
uine, both areas need to show a visible and coordinated pattern of
activity. This is particularly true of the sincere smile, which in its
broad form alters almost all of the facial topography from the lower
eyelid downwards to the bottom margin of the face. While general
image compositing tools [Agarwala et al. 2004] allow the user to
crop a face region and seamlessly blend it into another face, they
are incapable of improving the compatibility of the copied com-
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ponent and the target face, as the example shown in Figure 1. To
replace the closed mouth in Figure 1a with an open one in Fig-
ure 1b, a straightforward solution is to crop the mouth region, apply
additional alignment adjustments, and seamlessly blend it into the
target face. However, the resulting composite is semantically very
unnatural (Figure 1e). This is because, when the mouth opens, the
shape of the whole lower-half of the face deforms accordingly. To
our best knowledge there are no existing tools that automatically
handle these deformations for creating realistic facial composites.

We address this problem by presenting Expression Flow, a 2D flow
field applied on the target image to deform the face in such a way
that it becomes compatible with the facial component to be copied
over. To compute the expression flow we first reconstruct a 3D face
shape for each image using a dataset of other people’s face shapes.
Unlike traditional 3D fitting which tries to minimize the fitting er-
ror on each image, we jointly reconstruct a pair of 3D shapes, which
have the same identity, but with different expressions that match our
input image pair. This is formulated as an optimization problem
with the objective to minimize the fitting errors with a person iden-
tity constraint. A 3D flow is then computed from the pair of aligned
3D shapes, and projected to 2D to form the 2D expression flow. The
shapes are also used to warp the 3D pose of the new component be-
fore blending in. Due to the identity constraint, the expression flow
reflects changes mainly due to differences of expression, and can
deform the face in a natural way, as shown in Figure 1d.

Our expression flow is a hybrid of 3D and 2D methods. On the one
hand, we rely on rough 3D shapes to compute the expression differ-
ence between faces with different poses. Since typical expression
flows contain much lower level of detail (frequencies) than typical
appearance details, we found that our rough 3D reconstruction is
adequate for the purpose of expression transfer. On the other hand,
we rely on 2D methods to warp face images and transfer local de-
tails between them. Our system thus has a greater flexibility and a
wider application range than previous 3D and 2D expression trans-
fer methods (see Section 2).

Based on the proposed expression flow we develop an efficient face
compositing tool. To evaluate the effectiveness and generality of the
proposed system, we conducted a comprehensive user study. The
results suggest that the face composites created by our system have
much higher fidelity than those generated by previous methods.

2 Related Work

Our work is related to previous research on face editing, facial ex-
pression mapping, face alignment, 3D shape fitting and image com-
positing.

Face Image Editing. Face image enhancement has been the sub-
ject of extensive work. Earlier approaches use generic face images
as training data for applications such as super-resolution [Liu et al.
2007] and attractiveness enhancement by global face warping [Ley-
vand et al. 2008]. Recently Joshi et al. [2010] proposed a system
to adjust global attributes such as tone, sharpness and lighting of
a face image using personal priors. Blanz et al. [2004] fit a mor-
phable 3D model to a face image, and then render a new face using
the same pose and illumination to replace it. The face swapping
system [Bitouk et al. 2008] achieves a similar goal by construct-
ing and using a large face image library. A real-time system for
retrieving and replacing a face photo based on expression and pose
similarity was shown in [Shlizerman et al. 2010]. All these systems
target global face editing. However replacing an entire head or face
is often not desired for personal photo editing, global warping does
not handle large topology and appearance changes, and generat-
ing realistic textured head models and compositing them into exist-
ing photos remains a challenging problem. Our method combines

global warping and local compositing of face parts for an effective
by-example expression editing.

Expression Mapping. There is also a large body of work on
transferring expressions between images, which falls into two cate-
gories: 3D methods and 2D approaches. 3D approaches, such as the
expression synthesis system proposed by Pighin et al. [1998] and
the face reanimating system proposed by Blanz et al. [2003], try to
create photorealistic textured 3D facial models from photographs
or video. Once these models are constructed, they can be used for
expression interpolation. However, creating fully textured 3D mod-
els is not trivial. In order to achieve photorealism the system has to
model all facial components accurately such as the eyes, teeth, ears
and hair, which is computationally expensive and unstable. These
systems thus can only work with high resolution face images shot
in controlled indoor environments, and unlike our system, are not
robust enough to be used on day-to-day personal face photos.

2D expression mapping methods [Williams 1990] extract facial fea-
tures from two images with different expressions, compute the fea-
ture difference vectors and use them to guide image warping. Liu
et al. [2001] propose an expression ratio image which captures both
the geometric changes and the expression details such as wrinkles.
However, due to the lack of 3D information, these methods cannot
deal with faces from different view points. Most importantly, these
methods alone cannot synthesize features that are not in the original
image, such as opening a mouth.

Facial Feature Localization. Various techniques have been pro-
posed for facial feature localization on images as well as in
video [Decarlo and Metaxas 2000]. Most of them combine local
feature detectors with global geometric constraints. The widely-
used Active Shape Model [Cootes et al. 1995] learns statistical dis-
tributions of feature points, thus allowing shapes to vary only in
ways seen in a training set. Active Appearance Models [Cootes
et al. 2001] explore image intensity distributions for constraining
the face shape. Pictorial structure methods [Felzenszwalb and Hut-
tenlocher 2005] localize features by maximizing the posterior prob-
ability for both appearance and shape. Recent work in this field
also includes component-based discriminative search [Liang et al.
2008], and a subspace-constrained mean shift method [Saragih
et al. 2009].

3D Shape Fitting. Recovering the 3D face shape from a single im-
age is a key component in many 3D-based face processing systems.
Blanz and Vetter [1999] optimize the parameters of a 3D morphable
model by gradient descent in order to render an image that is as
close as possible to the input image. Romdhani and Vetter [2003]
extend the inverse compositional image alignment algorithm to 3D
morphable models. Shape-from-shading approaches are also ap-
plied to 3D face reconstruction [Dovgard and Basri 2004; Shlizer-
man and Basri 2011]. Kemelmacher-Shlizerman et al. [2010] show
how to find similarities in expression under different poses, and use
a 3D-aware warping of facial features to compensate for pose dif-
ferences.

Image Compositing. General image compositing tools such as
the photomontage system [Agarwala et al. 2004] and the instant
cloning system [Farbman et al. 2009] allow image regions from
multiple sources to be seamlessly blended together, either by Pois-
son blending [Pérez et al. 2003] or using barycentric coordinates.
Sunkavalli et al. [2010] propose a harmonization technique which
allows more natural composites to be created.
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Figure 2: The flow chart of our system.

3 Our System

3.1 System Overview

Figure 2 shows the flow chart of the proposed system. Given a
target face image which the user wants to improve, and a reference
image which contains the desired feature to be copied over, our sys-
tem first uses computer vision techniques to automatically extract
facial feature points on both images. Based on the extracted feature
points, we then jointly reconstruct 3D face shapes for both images
using a 3D face expression dataset. Our 3D fitting algorithm makes
sure that the two shapes have the same identity, thus the main dif-
ference between them is due to changes in expression. We then
compute a 3D flow by subtracting the two shapes and project it to
2D to create the expression flow. The expression flow is used to
warp the target face. We also use the 3D shapes to align in 3D
the reference face to the target face. The user then specifies the re-
gion of the facial feature to be transferred, which is then seamlessly
blended into the target image to create the final composite.

3.2 Single Image Fitting

We first describe how to fit a 3D face shape to a single face image.
Given the input image, the facial landmarks are first localized us-
ing Active Shape Model (ASM) [Cootes et al. 1995], a robust facial
feature localization method. Following Milborrow and Nicolls’s
approach [2008], we localize 68 feature points, as shown in Fig-
ure 2.

We represent the 3D geometry of a face with a shape vector s =
(x1, y1, z1, · · · , xn, yn, zn)T that contains X,Y, Z coordinates of
its n vertices. Following Blanz and Vetter’s work [1999], we de-
fine a morphable face model using Principal Component Analysis
(PCA) on the training dataset. Denote the eigenvectors as vi, eigen-
values as λi, and the mean shape as s̄, a new shape can be generated
from the PCA model as:

snew = s̄+
∑

βivi = s̄+ V · β. (1)

The 3D fitting is performed by varying the coefficients β in order to
minimize the error between the projections of the pre-defined land-
marks on the 3D face geometry, and the 2D feature points detected
by ASM. We apply a weak perspective projection model, and define
the fitting energy for the kth landmark as:

Ek =
1

2
||R · (s̄(k) + V(k) · β)−X(k)||2, (2)

where R is the 2 by 3 projection matrix, V(k) is the sub-matrix
of V consisting of the three rows that corresponding to X,Y, Z
coordinates of the kth landmark. X(k) = (x(k), y(k))T is X,Y
coordinates of the kth landmark detected from the face image.

Assuming a Gaussian distribution of the training data, the probabil-
ity for coefficients β is given by:

p(β) ∼ exp[−1

2

∑
(βi/λi)

2]. (3)

Let Λ = diag(λ2
1, λ

2
2, · · · , λ2

L). We define the energy of coeffi-
cients as:

Ecoef =
1

2
· βTΛ−1β. (4)

The total energy function to be minimized is thus the combination
of the two terms:

E =
∑

wkEk + c · Ecoef , (5)

where c is a parameter controlling the tradeoff between the fitting
accuracy and the shape fidelity, which is set to 5 × 106 in our sys-
tem. wk is the weight for the kth landmark. In our system we set
wk = 0.5 for landmarks of eyebrows, since our training shapes are
textureless and these landmarks are hard to be labeled accurately.
We empirically set wk = 2 for contour points, wk = 3 for mouth
points, and wk = 1 for all other points.

To minimize E, we set∇βE = 0, which leads to:

β = P−1Q, (6)

where

P =
∑

wk(RV(k))TRV(k) + cΛ−1, (7)

Q =
∑

wk(RV(k))T (X(k) −Rs̄(k)). (8)

The above closed-form solution assumes that we know V (k), the
3D vertices corresponding to the k-th landmark. For landmarks
located inside the face region we can simply hard-code the corre-
sponding 3D vertex. However, landmarks along the face contour
do not have a single corresponding vertex; they must be matched
with 3D vertices along the face silhouette. We therefore employ a
two-stage optimization approach to find the optimal β. In the first
stage we find the correspondences between vertices and landmarks
by projecting the vertices onto the image plane, finding their convex



Figure 3: Fitting a 3D shape to the target image in Figure 2 using
our two-stage optimization algorithm. Left: How the shape de-
forms. Green lines are ASM features lines, the pink line is the pro-
jected face contour from face geometry. The short red lines show
the contour landmarks projected onto the face contour. Right: fitted
face shape after 3 iterations.

hull and assigning each landmark to the closest point on the convex
hull, as shown on Figure 3(left). In the second stage we deform
the face shape by minimizing the energy in Equation 5. We repeat
the two stages until the shape converges. Figure 3(right) shows the
result after three iterations. We can see that the proposed approach
minimizes the fitting error. The algorithm is formally described in
Algorithm 1.

Algorithm 1 Single Image Fitting

Input: facial landmarks X(1),···,(K) and the shape PCA model.
Output: shape s that best fits the landmarks.

1: Set β = 0.
2: repeat
3: Set s = s̄+ Vβ.

4: Find projection matrix R from s and X(1),···,(K) by using
the least squares method.

5: Project all vertices of s onto the image plane: s′ = P (R, s).
6: Find the convex hull of s′ as H(s′).

7: For contour landmarks Xi, find correspondence using
H(s′).

8: Solve β in Equation 6.
9: until β converges.

3.3 Expression Models

To train the PCA model we use the face expression dataset pro-
posed by Vlasic et al. [2005]. This dataset contains 16 subjects,
each performing 5 visemes in 5 different expressions. This dataset
is pre-aligned so that the shapes have vertex-to-vertex correspon-
dence.

Building a single PCA model using all training shapes is problem-
atic, since the training shapes vary in both identity and expression.
A single PCA might not be expressive enough to capture both types
of variations (underfitting), and also does not allow to distinguish
between the two. We thus build a PCA model for each expression
separately. We could also use more sophisticated nonlinear meth-
ods (e.g. manifold [Wang et al. 2004]). However, since that face
shapes do not vary dramatically, we have found that this approxi-
mation gives desired results.

For a given image, we select the PCA model that gives the min-
imum reconstruction error using the fitting algorithm described
above. The target and reference face therefore may fall into dif-
ferent expression models. We denote the PCA model for the target
image as (Vt,Λt, s̄t), and its training shapes as St = (st1, ..., s

t
M ).

Similarly, we denote the model and its training shapes for the ref-
erence image as (Vr,Λr, s̄r,Sr). The new shapes to be recon-
structed from the images are denoted as st and sr .

3.4 Joint Fitting

Using the constructed expression models and the single image fit-
ting approach proposed above, a natural idea is to fit each input
image individually, and then try to generate the expression flow by
subtracting the two shapes. However, we found that this approach
does not work well. The reason is that each 3D shape is a linear
combination of all face shapes in the training dataset, which con-
tains faces from multiple human subjects. By fitting the 3D shape
individually to each image, we essentially generate 3D shapes that
have different virtual identities. The difference between the two
shapes is then mainly due to identity difference, not expression dif-
ference.

To solve this problem, our approach is to jointly fit 3D shapes to
input images so that they have the same identity. To add such a
constraint, we re-formulate st as a linear combination of the orig-
inal training shape vectors sti , parameterized with new coefficients
γti (i = 1, ...,M ) as:

st = s̄t + Vtβt = s̄t + Stγt. (9)

Similarly, we re-formulate sr as:

sr = s̄r + Vrβr = s̄r + Srγr. (10)

The coefficients γt and γr describe the face shape of a new person
under a certain expression as a linear combination of the shapes of
the training subjects under the same expression. They essentially
define the virtual identities of the two 3D shapes as a linear combi-
nation of training subjects. Since sti and sri correspond to the same
human subject, by enforcing γt = γr = γ, we guarantee that st

and sr have the same identity. We thus replace γt and γr with a
single γ.

From Equation 9 we have βt = (Vt)TSt · γ. Substituting β with
γ in Equation 4, the coefficient energy for st becomes:

Etcoef =
1

2
· γT ((Vt)TSt)T (Λt)−1((Vt)TSt)γ. (11)

Replacing t with r we have the formulation for the coefficient en-
ergy Ercoef for sr . To jointly fit st and sr , we minimize the total
energy:

Etotal =
∑

wk(Etk + Erk) + c · (Etcoef + Ercoef ). (12)

The optimal γ that minimizes this total energy is:

γ = (P t + P r)−1(Qt +Qr), (13)

where P t and P r have the same formulation as:

P =
∑

wk(RS(k))TRV(k) + c(VTS)TΛ−1VTS. (14)

Substituting R,S,V,Λ with Rt,St,Vt,Λt and Rr,Sr,Vr,Λr

gives us P t and P r , respectively. Similarly, Qt and Qr are defined
as:

Q =
∑

wk(RS(k))T (X(k) −Rs̄(k)), (15)



and substituting R,S, X, s̄ with Rt,St, Xt, s̄t and Rr,Sr, Xr, s̄r

gives us the formulation for Qt and Qr .

The joint fitting algorithm is formally described as follows:

Algorithm 2 Joint Fitting

Input: facial landmarks of two images, and all PCA models.
Output: shapes st and sr that jointly fit the landmarks on both

images.

1: Apply Algorithm 1 to each image to determine their expression
models V t and V r , as in Section 3.3.

2: Set γ = 0.
3: repeat
4: Set st = s̄t + Stγ and sr = s̄r + Srγ.
5: For each image, apply step 4-7 in Algorithm 1.
6: Solve the common γ in Equation 13.
7: until γ converges.

3.5 Computing 2D Flow

We first align the two 3D shapes to remove the pose difference.
Since the reconstructed 3D shapes have explicit vertex-to-vertex
correspondences, we can compute a 3D difference flow between
the two aligned 3D shapes and and project it onto the image plane
to create the 2D expression flow. The flow is further smoothed to
remove noise. An example of the final expression flow is shown
in Figure 4. Figure 4a shows the horizontal flow, where red color
means positive movement in X direction (to the right), and blue
means negative movement (to the left). This figure essentially de-
scribes how the mouth gets wider when the person smiles. Fig-
ure 4b shows the vertical flow, where red color means positive
movement along Y axis (moving down), and blue means negative
movement (moving up). It illustrates that when the person smiles,
her jaw gets lower, and the cheeks are lifted.

(a) (b)

Figure 4: 2D expression flow computed from the example shown in
Figure 2. (a) Horizontal flow field. (b) Vertical flow field.

As shown in Figure 2, by applying the expression flow to the target
face, we can warp the target face to have a compatible shape for
a larger smile. Similarly, based on the 3D alignment of the two
shapes, we can compute a 3D rotation for the reference model, and
project it to the image plane to form a 2D alignment flow field,
which we call the alignment flow. Using the alignment flow, the
reference face can be warped to have the same pose as the target
face (see Figure 2).

(a) (b)

(d)

(e) (f)

(c)

Figure 5: Automatic crop region generation. (a) Target image. (b)
Warped target. (c). Reference image. (d) Warped reference. (e)
The user clicks on the mouth region (marked as blue) to specify the
region to be replaced. Our system automatically generates the crop
region shown as yellow. (f) Final composite after Poisson blending.

3.6 2D Compositing

After the two input face images are warped to the desired expression
and pose, our system provides a set of editing tools to assist the user
to generate a high quality composite. As shown in Figure 5, our
system employs an interactive feature selection tool, which allows
the user to single click a facial feature to generate a crop region that
is optimal for blending. This is done by employing a graph cuts
image segmentation tool similar to the one proposed in the digital
photomontage system [Agarwala et al. 2004]. Specifically, the data
term in our graph cuts formulation encourages high gradient regions
around the user selected pixels to be included in the crop region. For
a pixel p, the likelihood for it being included in the crop region is
defined as:

C(p) = α exp(−Ds(p)
σd

) + (1− α)

(
1− exp(−‖∇S(p)‖

σs
)

)
,

(16)
where Ds(p) is the spatial distance from p to the nearest pixel se-
lected by the user, ‖∇S(p)‖ is the gradient magnitude at p, and σd,
σs and α are parameters controlling the shape and weight of each
term. L(p)is the label of p. The data penalty in the graph cuts for-
mulation is then defined as Cd(p, L(p)) = 1 − C(p) if L(p) = 1
(inside the crop region), and Cd(p, L(p)) = C(p) if L(p) = 0
(outside the crop region).

We choose to use the “match gradient” formulation in the
photomontage system for setting the neighborhood penalty
Ci(p, q, L(p), L(q)) as:

‖∇SL(p)(p)−∇SL(q)(p)‖+ ‖∇SL(p)(q)−∇SL(q)(q)‖, (17)

which can lead to fewer blending artifacts. The total energy func-
tion which is the sum of the data and neighborhood penalty is then
minimized by graph cuts optimization [Boykov et al. 2001].

Once the crop region is computed, we apply additional harmoniza-
tion steps to make the cropped region more compatible with the
target image. The most noticeable artifact we found is that after ap-
plying the alignment flow to warp the reference image, it becomes
blurry. Blending a blurry region into a sharp image can be very no-
ticeable. To alleviate this problem we first apply the wavelet-based
detail enhancement filter proposed in [Fattal 2009] to sharpen the
crop region, then blend it into the target image using the Poisson
blending method [Pérez et al. 2003].

4 User Assistance

The computer vision components of our system cannot work per-
fectly well in all cases. For difficult examples, our system requires
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Figure 6: User assistance modes. (a) Reference image with auto-
matically extracted landmarks. Errors are highlighted by blue ar-
rows. (b) Landmark locations after manual correction. (c) Target
image. (d) Automatically computed crop region (yellow) with user
correction (red) to add smile folds. (e) Composite without smile
folds. (f) Composite with smile folds.
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Figure 7: User study results on comparing the original images, our
results and 2D results. Vertical axis is the number of times that a
specific category is voted for by the users.

a small amount of user assistance in order to generate high quality
results. The main steps that require user intervention are 2D align-
ment using ASM and crop region specification.

Our ASM implementation sometimes cannot generate accurate 2D
alignment results for side-view faces with large rotation angles.
This is a known hard computer vision problem. An example is
shown in Figure 6a, where some of the automatically computed
landmarks are not accurate, especially for the mouth and the left
eye region. Using these landmarks for 3D fitting is then erroneous.
In our system we allow the user to manually correct the bad ones,
so that accurate 3D fitting can be achieved, as shown in Figure 6b.

The crop region generation tool described in Section 3.6 allows the
user to quickly specify a selection mask. However, this method
sometimes cannot capture the subtle semantic expression details
that the user wants to transfer. Such an example is shown in Fig-
ure 6d, where the automatically generated crop region misses the
unique smile folds of the subject. The user can manually add the
smile folds into the crop region, which leads to a more natural com-
posite shown in Figure 6f.

5 Results and Evaluations

5.1 User Study

To quantitatively and objectively evaluate our system, we con-
ducted a user study using Amazon Mechanical Turk (AMT). Our
evaluation dataset contains 14 examples, each including four im-
ages: two originals, the result generated by our system and the re-
sult generated by a 2D method. The 2D method first applies Lucas-
Kanade image registration [Lucas and Kanade 1981] between the
two faces using only pixels inside the face region, using the de-
tected fiducial points for initialization, and then uses the rest of our
system to create the final composite. This is similar to the state-
of-the-art local facial component transfer approaches such as the
photomontage system [Agarwala et al. 2004] and the face replace-
ment feature in Photoshop Elements. These examples span across
different age groups from small children to elders, as well as dif-
ferent ethnic groups, and include both men and women. For each
user and each example, two images out of three (original, our result
and 2D result) were randomly chosen to be shown side-by-side,
and the user was asked to select the one that appears more natural.
Each combination was evaluated by 50 different users, so each re-
sult was compared against the originals and the other result both for
50 times. On average the users spent 15 seconds to evaluate each
pair.

Figure 7 shows the user study results. As we can see, the original
images were typically rated as most natural. This is not a surprise
as humans are very sensitive to the slightest imperfection on faces,
and we do not expect our results to be more realistic than natural
face images. Surprisingly however, in example 6, 7 and 13, our
results were actually rated higher than the originals. We believe
this is because our results in these examples achieved almost the
same level of fidelity as the originals, and the users were essentially
rating which face has a more pleasant expression when they did not
see noticeable artifacts (see example 7 in Figure 8).

As the data shows, our method was consistently favored by the users
against the 2D results by a significant margin, with the exception of
example 10, which is an eye-replacement example (last column in
Figure 8). This suggests that sometimes the 2D method is sufficient
for eye replacement when the two faces have roughly the same pose,
since the upper-half of the face is more rigid and opening or closing
the eyes may not involve any significant global change to the face.
The expression flow is insignificant in this case.

Some examples used in the user study are shown in Fig-
ure 1, 5, 6 and 8. All other examples are included
in the supplementary material, which is downloadable at:
http://juew.org/projects/expressionflow.htm.

To further evaluate the effectiveness of the proposed expression
flow, we conducted another user study where we only compare our
results against those generated by disabling expression flow on the
target image. Since 3D alignment is still applied, these results are
more natural than the 2D results. We chose 6 examples on which
our method were rated significantly better than 2D method, and
conducted a second round side-by-side comparison on AMT. Each
pair was evaluated by 100 users. The results are shown in Figure 9.
This study clearly suggests that the users consistently favored re-
sults with expression flow being applied.

5.2 Comparison with General Face Modeller

There are existing general face modellers that can construct a 3D
face model from an input image. One may wonder if they can be
applied to build 3D models for computing the expression flow, in-
stead of using the 3D fitting method proposed in Section 3.4. To
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Figure 8: Example 7, 13, 11, 10 used in the user study. For each example, top row: target image (left) and after being warped by the
expression flow (right); second row: reference image (left) and after being warped by the alignment flow (right); third row: our result; last
row: 2D result.

test this idea we applied two single image 3D fitting methods, the
popular FaceGen Modeller [Singular Inversions Inc. 2009] and Al-
gorithm 1 proposed in this paper applied to each of the faces in our
examples separately, as shown in Figure 10. Note that the differ-
ence flow computed using single image fitting significantly distorts
the faces, and the final composites are much worse than our results
shown in Figure 1 and 8. This is because single image fitting meth-
ods will vary all possible internal parameters to best fit a 3D model
for a face image, thus the two 3D models contain not only expres-
sion difference, but also identity difference. Using this difference
flow to warp the face will lead to significant artifacts.

In Figure 10d we also show comparison results by replacing the
whole target face with the 3D-corrected reference face generated
by our system, inspired by the face replacement system of [Bitouk
et al. 2008]. Note the various artifacts around the hair region in the
bottom example as whole face replacing cannot deal with occlu-
sions properly, and the changed gaze direction in the top example.
This suggests that whole face compositing is not always reliable
nor is it always desirable. Local component transfer is preferable in
many cases.

5.3 Apply Expression Flow Only

Instead of being applied for transferring facial components from
one image to another, the expression flow can also be used directly
for expression enhancement that does not involve large topology
changes, e.g., opening a mouth. Figure 11 shows two such exam-
ples, where the target face has a neutral or slight smile expression
and the reference face has a large smile. In this case the computed
expression flow accurately captures the characteristics of the per-
son’s smile, thus can be applied on the target image for smile en-
hancement. Since no blending is applied, these results have very
high fidelity.

Note that previous expression mapping techniques, such as the ex-
pression ratio image [Liu et al. 2001], cannot be directly applied in
these cases due to the 3D pose difference between input face im-
ages.

5.4 Apply Alignment Flow Only

In some cases the user may only want to transfer a local component
without modifying the other correlated ones. As the example shown
in Figure 12, one may only want to copy the eyebrows and wrinkles
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Figure 10: Comparisons with other methods. (a). 3D Models and the difference flows generated by FaceGen Modeller. (b). Composites
generated using FaceGen models. (c). Composites generated using the single image fitting algorithm (Algorithm 1). (d). Whole face
replacement results. Compared with our results in Figure 1 and 8, these results contain more severe artifacts.
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Figure 9: Top: user study results on comparing results with and
without applying expression flow. Vertical axis is the percentage of
users favoring results with expression flow. Bottom: Examples with
the most significant (E-2) and insignificant (E-1) differences.

from the reference face to the target face to make the expression
more expressive. In this case we can disable the expression flow,
and only apply the alignment flow computed from the 3D models to
the reference face. Compared with the 2D result, our composite is
more realistic since the correct 3D transformation has been applied
to the eyebrows and wrinkles.

5.5 Other Expressions

Although most examples we have shown aim at changing a non-
smiling face to a smiling one, our system can handle other less
common expressions within the range of expressions in our train-
ing data set. Figure 13 shows two examples where we change a

TargetReference Target warped by 
the expression flow

Figure 11: Using expression flow for expression transfer only.

neutral face to a surprise expression. Note how the eyes of the per-
son changes along with the expression in the top example, and the
large 3D pose difference between two input images in the bottom
example.

5.6 Failure Cases

Our system does not always generate realistic composites. In gen-
eral, if the input faces have a very large pose difference, then the
face region cropped from the reference image has to go through a
large geometric transformation before being composed onto the tar-
get image. Artifacts are likely to be introduced in this process. Fur-
thermore, in difficult cases our 3D fitting may contain errors, which
will lead to inaccurate transformation. Figure 14 (top) shows one
such example. Our system failed to compute an accurate 3D trans-
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Figure 12: An example of creating composite without applying ex-
pression flow. Eyebrows and wrinkles are transferred from the ref-
erence to the target image. Note the right eyebrow in the result
images.

Target Reference Our Result

Figure 13: Changing a neutral expression to a surprise expression.

formation for the mouth region, thus in the result the mouth region
is clearly not compatible with the pose and shape of the target face,
although our result is still significantly better than the 2D result. To
avoid this problem one can find another reference image where the
face pose is closer to that of the target face. This is not a problem if
a large personal photo album of the subject is available.

Figure 14(bottom) shows another limitation of our system on han-
dling asymmetric expressions. For this expression transfer exam-
ple, our system cannot raise one eyebrow and at the same time
lower the other one. This is because our training dataset contains
only symmetric expressions. Using a richer training dataset will
help in this case.

5.7 Computational Efficiency

We found that the iterative joint fitting algorithm (Algorithm 2) con-
verges fast in practice. In our experiments we use only 10 iterations,
each being a closed-form solution. In our Matlab implementation,
it takes less than one second to run the algorithm. Our approach
is also robust to local minima for two reasons. First, although we
use an alternating minimization approach, in each stage we have
a closed-form solution to efficiently minimize the energy in that
stage. Second, we found that our initialization by aligning the 3D
shapes to the images using internal facial landmarks, is accurate
enough and leads to a quick convergence in all our examples.

Target

Reference

Our Result 2D Result

Reference Target Our Result

Figure 14: Two failure examples. Top: an unsuccessful composit-
ing. Bottom: an unsuccessful expression transfer.

6 Conclusion and Future Work

In this paper we address the problem of transferring local facial
components between face images with different expressions of the
same person. To account for the expression difference, we propose
a novel expression flow, a 2D flow field which can warp the target
face in a natural way so that the warped face becomes compatible
with the new component to be blended in. The expression flow
is computed from a novel joint 3D fitting method, which jointly
reconstructs 3D face shapes from the two input images, so that the
identity difference between them is minimized, and only expression
difference exists. A comprehensive user study was conducted to
demonstrate the effectiveness of our system.

Currently our system relies on the user to provide the reference im-
age for improving the target image. In the future we plan to de-
velop a reference image search tool, which can automatically iden-
tify good reference images to use given the target image, in the
personal photo album of the subject. This will greatly improve the
efficiency of the personal face editing workflow.

Our system currently uses the face expression dataset collected by
Vlasic et al. [2005]. While we demonstrate in this paper that our
system can work reliably well on a wide variety of people of differ-
ent races, ages and genders, we are also aware that the dataset is not
rich enough to handle all possible expressions, especially asymmet-
ric ones. As future work we plan to use existing 3D face capturing
methods [Zhang et al. 2004; Wang et al. 2004] to capture more data
to enrich our dataset, and explore whether it can boost the perfor-
mance of the system.

As pointed out by some user study subjects, some of our results still
contain minor but noticeable photometric artifacts. For instance,
some subjects pointed out that the mouth region shown in Example
14, Figure 8 is grainy. While fixing these blending artifacts is not
the main focus of this paper, we plan to incorporate more advanced
harmonization methods [Sunkavalli et al. 2010] into our system to
further improve the quality of the final results.
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