

Facial Expression Editing in Video Using a Temporally-Smooth Factorization

Fei Yang¹ Lubomir Bourdev²
¹Rutgers University

Eli Shechtman³ Jue Wang³
²Facebook Inc.

Dimitris Metaxas¹

³Adobe

INTRODUCTION

Goal: Edit expression in video – exaggerate, attenuate or replace facial expressions in a video (e.g., an interview).

Approach:

- Use a 3D tensor-based model that factors out variations due to: pose, expression and identity.
- Fit the model to all frames s.t. the identity is fixed and the expression and pose vary smoothly.
- Adjust expression coefficients.
- Combine warping with frame reordering to render the final edited frames.

JOINT FITTING

Decomposing face geometry into expression and identity

Expression Identity
$$s_t = \overline{s} + V \otimes \beta_t \otimes \gamma_t$$

 $(s_t: new shape \bar{s}: mean shape V: tensor core)$

How to fit the model to face images?

$$E = E_f + \lambda_{\gamma} E_{\gamma} + \lambda_{\beta} E_{\beta} + E_e$$

Minimize geometric error

$$E_f = \sum_t ||W^{1/2}(P_t s_t - Y_t)||^2 egin{array}{ll} W: ext{ weights} \ P_t: ext{ projection} \ Y_t: ext{ landmarks} \end{array}$$

New shape is close to distribution of training set

$$E_{\gamma} = \frac{1}{2} \gamma^T \gamma$$
 $E_{\beta} = \frac{1}{2} \beta^T \beta$

Expression changes smoothly over time

$$E_e = \frac{1}{2} \sum_{t} (\lambda_1 ||\nabla_t \beta_t||^2 + \lambda_2 ||\nabla_t^2 \beta_t||^2)$$

• Same identity γ_t across all frames

FITTING ALGORITHM

Energy minimization with respect to pose, expression and identity parameters

- 1. Repeat
- 2. Fit projection matrices
- 3. Update landmark correspondences
- 4. Fit identity coefficients
- 5. Fit expression coefficients
- 6. Until converge

EXPRESSION MANIPULATION

- Adjust expression coeffs.
 and fix other parameters
- Dynamic Time Warping to reorder frames
- "Expression flow" to correct residual discrepancies
- Additional flow to correct boundary compatibility

EXAMPLES - REPLACING EXPRESSIONS

Examples – Magnifying and Suppressing Expressions

