

Eye Localization Through Multi-scale Sparse Dictionaries

Fei Yang, Junzhou Huang, Peng Yang and Dimitris Metaxas Computational Biomedicine Imaging and Modeling Center Computer Science Department Rutgers University

Motivations

- Object localization can be formularized as a sparse fitting problem.
- Contextual information is important to detection and localization.
- Only the most likely locations should be evaluated, rather than sliding a window in the whole image.

Localize a target patch

• A target patch y_p should approximately lie in the linear span of all the training patches $v_{p,i}$ extracted from the same location p

$$y_p = \alpha_{p,1} v_{p,1} + \alpha_{p,2} v_{p,2} + \dots + \alpha_{p,N} v_{p,N}$$

 Build a dictionary that consists of patches extracted from all the training images and from all possible locations

$$A = [v_{1,1}, \cdots, v_{1,N}, \cdots, v_{P,1}, \cdots, v_{P,N}]$$

Localize target patch by solving sparse coefficients

$$x = \operatorname{argmin} ||Ax - y||^2$$
, subject to $||x||_0 \le k$

Compute residual for each non-zero coefficient

$$r_i(y) = ||y - Ax_i||_2, (i = 1, \dots, k)$$

Estimate the position of the target patch

$$L_y = \underset{i}{\operatorname{argmin}} r_i(y)$$

Localize eyes

- From large scale to small scale
- Update the best estimated eye location

$$L_S = L_{S-1} + L_0 - L_v$$

Combine the estimation of each scale

Build multi-scale dictionaries

Algorithm summary

Algorithm 1 Training sparse dictionaries

- 1: Align face images using the positions of two eyes.
- 2: Expand training set by scaling and rotation.
- 3: **for** scale s = 1 : S **do**
- 4: **for** position p = 1 : P **do**
- Extract image patches at scale s and location p. $A_{s,p} = [v_{s,p,1}, v_{s,p,2}, \cdots, v_{s,p,N}].$
- Normalize columns of $A_{s,p}$ to have unit length.
- 7: Compress $A_{s,p}$ by K-SVD.
- 8: end for
- : Concatenate all the dictionaries at size s.

$$A_s = [A_{s,1}, A_{s,2}, \cdots, A_{s,P}]$$

10: **end for**

Algorithm 2 Eye Localization

- 1: Detect and crop face region.
- 2: Set initial eye position L_0 .
- 3: **for** s = 1 : S **do**
- 4: Apply OMP algorithm to find k sparse coefficients j_1, \dots, j_k
- 5: Find minimum residual and estimate the location of current patch following Equation (9) and (10).
- 6: Update current estimated eye position L_s following Equation (11).
- 7: **end for**
- 8: Repeat the above steps for the other eye.

Experiments

BioID	e < 0.05	e < 0.10	e < 0.25
Jesorsky 01 [18]	40.00%	79.00%	91.80%
Hamouz 04 [16]	50.00%	66.00%	70.00%
Hamouz 05 [17]	59.00%	77.00%	93.00%
Cristinacce 04 [12]	56.00%	96.00%	98.00%
Asterialdis 06 [2]	74.00%	81.70%	97.40%
Bai 06 [3]	37.00%	64.00%	96.00%
Niu 06 [21]	78.00%	93.00%	95.00%
Campadelli 06 [4]	62.00%	85.20%	96.10%
Campadelli 09 [5]	80.70%	93.20%	95.30%
Valenti 08 [27]	84.10%	90.85%	98.49%
Ours	89.60%	95.50%	99.10%

COMPARISON OF EYE LOCALIZATION METHODS IN BIOID DATABASE

