3D-Aware Expression Flow for 2D Face Compositing

Fei Yang¹ Jue Wang² Eli Shechtman² Lubomir Bourdev² Dimitris Metaxas¹

^{1.} Rutgers University

^{2.} Adobe Systems

Hard to capture the moment SIGGRAPH2011

Photometric flaws

Non-desirable expression

Goal

Our result

Reference

Previous work

- Photo enhancement
 - Joshi et al. [2010]

- Face swapping
 - Bitouk et al. [2008]

Original photographs

After automatic face replacement

Face editing

Replace whole face

Reference

Target

Replace whole face

Previous work

- Expression mapping
 - 3D approaches
 - Pighin et al. [1998]
 - Blanz et al. [2003]
 - Metaxas et al. [2004]
 - 2D approaches
 - Williams [1990]
 - Liu et al. [2001]

Previous work

• Interactive Digital Photomontage

- Agarwala et al. [2004]

Local component transfer

• Copy mouth region

Reference

Target

Photomontage (unnatural)

Our result

Outline of our approach

- Overview
- 3D Model Fitting
- Image Compositing
- Results and Evaluation

System overview

Outline of our approach

- Overview
- 3D Model Fitting
- Image Compositing
- Results and Evaluation

Training dataset

- Vlasic et al. [2005]
 - 16 subjects, 5 expressions, 5 visemes

Face model

• Linear span

$$= \gamma_1 \cdot (\gamma_2 + \gamma_2 \cdot (\gamma_3 + \gamma_3 \cdot (\gamma_3 + \cdots + \gamma_N \cdot (\gamma_3 + \cdots + (\gamma_N + \cdots + \gamma_N \cdot (\gamma_3 + \cdots + (\gamma_N + \cdots + (\gamma$$

- PCA subspace
 - Mean shape \overline{s}
 - Eigenvectors $\mathbf{V} = [v_1, v_1, \dots, v_n]$
 - Eigenvalues $\Lambda = \operatorname{diag}[\lambda_1^2, \lambda_2^2, \dots, \lambda_n^2]$

- New shape $s_{new} = \overline{s} + V \cdot \beta$

Blanz et al. [1999]

Face model

- Optimization
 - Total energy function:

 $E = E_{fid} + c \cdot E_{pca}$

- Fidelity term:

$$E_{fid} = \frac{1}{2} \sum \omega_k ||V_k - X_k||^2$$

- Subspace energy term:

$$E_{pca} = \frac{1}{2} \boldsymbol{\beta}^T \boldsymbol{\Lambda}^{-1} \boldsymbol{\beta}$$

V_k : Projections of 3D landmarks

 X_k : Facial features

- Matching features
 - Internal landmarks
 - Face boundary landmarks

- Algorithm
 - 1. Detect landmarks

Milborrow and Nicolls [ECCV 2008]

- Algorithm
 - 1. Detect landmarks
 - 2. Place 3D mean shape

- Algorithm
 - 1. Detect landmarks
 - 2. Place 3D mean shape
 - 3. Find face boundary

- Algorithm
 - 1. Detect landmarks
 - 2. Place 3D mean shape
 - 3. Find face boundary
 - 4. Find corresponding vertex

- Algorithm
 - 1. Detect landmarks
 - 2. Place 3D mean shape
 - 3. Find face boundary
 - 4. Find corresponding vertex
 - 5. Update 3D shape

GGRAPH2011

- 1. Detect landmarks
- 2. Place 3D mean shape
- 3. Find face boundary
 4. Find corresponding vertex
 5. Update 3D shape

GGRAPH2011

After 3 iterations

Target

Fitting independently

SIGGRAPH2011

а

 $\min E_a + E_b$ s.t. $\gamma^a = \gamma^b$

b

Outline of our approach

- Overview
- 3D Model Fitting
- 2D Compositing
- Results and Evaluation

2D compositing

• Warping with expression flow

Target

Flow

Warped Target

Difference

2D compositing

- Automatic crop region generation
 - "Graph Cuts" image segmentation [Agarwala et al. 2004]

Crop region

User assistance

• Adjust landmarks

User assistance

• Adjust crop region

Mark fold region

Copy mouth only C

Copy mouth and fold

Outline of our approach

- Overview
- Image Fitting
- 2D Compositing
- Results and Evaluation

Target

Warped by Expression Flow

Reference

Warped by 3D rotation

2D Method

Mouth distorted

Mouth too close to chin

Our Result

Target

Warped by Expression Flow

Reference

Warped by 3D rotation

2D Method

Our Result

Target

Warped by Expression Flow

Reference

Warped by 3D rotation

Smiling eyes

Wider cheeks

2D Method

Our Result

Reference

Warped by 3D rotation

Target

Warped by Expression Flow

Examples

2D Result

Smiling eyes

Lower jaw

Our Result

Our results

Question: Which image appears more realistic?

User study

• With vs. without Expression Flow

Question: Which image appears more realistic?

Comparison

• Expression flow vs. other methods

¹ FaceGen: http://www.facegen.com/

Expression flow only

Reference

Target

Our Result

From neutral to frown

Beginning

From neutral to frown

Reference

Target

Our Result

Failure cases

• Asymmetric expression

• Large pose change

Reference

Our Result

Conclusion

• Local feature compositing

• Expression flow

• Joint 3D fitting

http://www.juew.org/projects/expressionflow.htm

Our Result

Reference

Reference

Target

Our Result

Reference

Target

Our Result

Our Result

Reference

Our Result

Reference

Reference

Target

Our Result

Our Result

Reference

Our Result

Reference

Our Result

Reference

Our Result

Reference